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The Myth of Bumpy Hunter-Gatherer Mismatch even if the mutation rate were 10 times faster. (In fact,
Distributions Watson et al. [1996] have already doubled the mutation

rate by confusing divergence with substitution rate whenTo the Editor:
citing Ward et al. [1991].)Watson et al. (1996) have elaborated on figure 8 of

Another problem is the definition of a bumpy distribu-Mountain et al. (1995) by contrasting the mtDNA mis-
tion. Is it one with many peaks? In contrast to the au-match distributions of African hunter-gatherers and
thors’ claim, it seems that in figure 2 of Watson et al.food producers. Their claim is that food production in-
(1996) the food-producing Fulbe, Kanuri, and Tuaregsfluences mtDNA mismatch distributions so that hunter-
have a mismatch distribution that is at least as bumpygatherers have ‘‘bumpy’’ mismatch distributions,
as that of the hunter-gatherer !Kung of Botswana andwhereas food producers tend to have ‘‘bell-shaped’’ dis-
Sekele of Namibia (see our fig. 1), since all of thesetributions. This is an astonishing alternative hypothesis
distributions have four peaks. The classification be-to that of Rogers and Harpending (1992), Sherry et al.
comes even more doubtful when investigating the rea-(1994), and Rogers (1995), who concluded that a Pleis-
sons for the peaks: a single outlier sequence in the !Kungtocene population explosion Ç60,000 years ago caused
sample causes bumpiness by disturbing an otherwisethe bell-shaped mtDNA mismatch distribution found in
bell-shaped distribution (with mode at two mutations),most human populations.
while for the Kanuri sample deletion of a single sequenceAgriculture emerged after the Younger Dryas glacial
would not restore bell-shapedness. It thus appears thatinterlude, that is, within the last 10,000 years, with sev-
bumpiness sensu Watson et al. (1996) is highly subjec-eral independent centers of origin at different times (cf.
tive, because it does not draw on any numerical mea-Smith 1994). Following the logic of Watson et al.
surements, such as those suggested by Sherry et al.(1996), all populations 10,000 years ago would have
(1994) or Harpending et al. (1993). In fact, the mis-had bumpy mismatch distributions. But how many mu-
match distributions that they perceive as nonbumpy are,tations can be acquired in an expanding population
except for the Hausa and Somali samples, far from uni-within 10,000 years? According to the mutation rate
modal and bell shaped: the rectangular-shaped distribu-Watson et al. (1996) have in mind, one mutation, on
tion of the Mandenka, for example, can arise only as aaverage, between two sequences (underpinned by com-
superposition of a number of distributions with quiteputer simulations, see Forster et al. 1996); this would
different modes and cannot be explained by a simplejust shift mismatch distributions by one step to the right
expansion process, be it sudden or exponential. In a verywith little smoothing. In particular, it cannot bridge gaps
diverse gene pool, such as that of Africa, populationbetween distinct major modes of the distribution. If, for
fusion events can easily generate bumpy mismatch distri-example, the Biaka (West Pygmies) of today were to
butions in expanding populations.start clearing their rain forest and became successful

Even if bell-shapedness (appropriately measured) didfood producers, how many years would we have to wait
correlate positively with food production, such a corre-to see the bumps in their mismatch distribution, which
lation would not prove a causal relationship. For exam-are £18 mutations apart, melt away? It is evident that

a period of just a few thousand years would not suffice, ple, the same geographic factors that cause a population
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least three additional transitions, that sticks out in all
phylogenetic analyses of African populations where it
occurs. This cluster, described by Bandelt et al. (1995),
includes the major African 9-bp deletion subcluster
(Soodyall et al. 1996) and is widespread in Africa. It is
even found as single outliers in Sardinia, the Middle East
(Di Rienzo and Wilson 1991), and Turkey (Calafell et
al. 1996). According to Horai and Hayasaka (1990) as
well as Tamura and Nei (1993), this cluster constitutes
the deepest rooting lineage of their mtDNA trees, and
in other analyses it would also branch off very deeply.
Therefore, all these populations, including §9 of the 13
populations used by Watson et al. (1996), such as the
Senegalese Mandenka, coalesce close to mtEve. The co-
alescence time of 9,000–21,000 years for the Mandenka
and thus for mtEve, as calculated by Watson et al.
(1996) in their table 3, compares unfavorably with cur-
rent estimates of 140,000–160,000 years for mtEve
(Horai et al. 1995; Tamura and Nei 1993). The other
populations in their table 3 fare little better. A glance
at table 2 of Graven et al. (1995) suggests that the Man-

Figure 1 Distribution of pairwise differences in the Sekele of denka have a pronounced population structure and can
Namibia (hunter-gatherers), based on sequences for the first hypervari- be divided into three very different population compo-
able segment (data from Soodyall 1993). The distribution was calcu- nents, essentially represented by RFLP status 1-2, 2-2,
lated using MacPairwise 5.0 (Macaulay and Micklem 1995).

and 7-2. Since these haplogroups have quite different
geographic distributions and diversities in the other sub-
Saharan populations, it is extremely implausible thatto grow and to acquire a bell-shaped distribution, could,

many tens of thousands of years later, also favor the this mix of lineages arose in the Mandenka, as the ap-
proach of Watson et al. (1996) assumes.introduction of agriculture. In order to link a population

expansion event, as perceived in genetic data, to the Genetic distances between populations as those com-
piled by Watson et al. (1996) contribute even less thanonset of agriculture, it is therefore indispensable to date

genetically the expansion and then compare it to the mismatch distributions to the understanding of the rela-
tionships between populations. For instance, Kikuyuarchaeological record for agriculture. No attempt has

been made by Watson et al. (1996) to adduce such a and Turkana, as well as Kanuri and Hausa, are each at
distance 0 in their table 2, although even the mismatchproof, and in fact their analytical methods could not

accomplish this complex task. distributions in their figure 2 can clearly distinguish
these populations. Recent admixture of a group of veryOne of the basic assumptions of standard coalescent

models is that the population in question is genetically distant lineages (such as the 9-bp cluster) into two or
more populations inflates genetic distances, and a treeisolated from other populations. This is strictly justified

only when the human species is mismatch analyzed as analysis of these distances (their fig. 3) can misinterpret
this recent admixture as an ancient population split.a whole. While mismatch analysis of the human species

may be rather insensitive to population substructure Finally, we briefly present an analysis of the !Kung of
Botswana to demonstrate that most of their mtDNA(Rogers et al. 1996), mismatch analysis of human sub-

populations may be strongly affected by bottlenecks and diversity predates their ethnogenesis, and therefore the
total diversity should not be used to infer the privatefusion processes. The genetic exchange that populations

(ethnic groups) have experienced over tens of thousands history of the !Kung. Although the !Kung sample con-
sists of only 20 sequences, it coalesces very deeply (cf.of years is impossible to model, because it would not

follow any predictable regular pattern. The analysis of Tamura and Nei 1993). The major !Kung cluster (com-
prising all !Kung except one outlier) is also shared byWatson et al. (1996) does not address this crucial point,

inevitably leading to unrealistic coalescence ages, as we other Khoisan populations: We collect all sequences
from Soodyall (1993) (cf. Sherry et al. 1994), Vigilantexplain in the following. Many populations in Africa

coalesce close to the human mtDNA coalescent (mtEve) (1990), and Watson et al. (1996) sharing the motif np
16187, 16230, and 16243, which are the most conserva-for a trivial reason: there is one cluster, characterized

by a transversion at nucleotide position (np) 16188 tive positions (according to Wakeley 1993) in the !Kung
consensus sequence. To take reversals in the motif into(numbering according to Anderson et al. 1981) and at
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and their differentiation from other Khoisan popula-
tions may have occurred quite recently relative to the
!Kung coalescence time.

In summary, mismatch and distance analyses alone
are insufficient tools to uncover the history of ethnic
groups or mankind as a whole, since ‘‘information is
lost in studying pairwise difference data rather than the
sequences themselves’’ (Marjoram and Donnelly 1994,
pp. 680–681). Phylogenetic analysis of human mtDNA
data is a daunting task, but it nevertheless must be tack-
led if we are to reconstruct our genetic prehistory.

HANS-JÜRGEN BANDELT1 AND PETER FORSTER2

1Mathematisches Seminar and 2Heinrich-Pette-Institut
für Experimentelle Virologie und Immunologie,
Universität Hamburg, Hamburg
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To the Editor:
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thematisches Seminar, Universität Hamburg, Bundesstraße 55, D-20146 Ham- might be forgiven for thinking that, after all the contro-burg, Germany.

versy surrounding the reconstruction of the original mi-� 1997 by The American Society of Human Genetics. All rights reserved.
0002-9297/97/6104-0029$02.00 tochondrial gene trees (e.g., see Maddison 1991; Tem-

pleton 1993), the field was once again in difficulties
because of (a) a serious underestimation of the mutation
rate by a factor of almost nine and (b) the resulting

Am. J. Hum. Genet. 61:983, 1997
misdating of past divergences. We believe that such an
interpretation would be unduly pessimistic.

Reply to Bandelt and Forster Conventional approaches have calibrated the muta-
To the Editor: tion rate by reference to the divergence between humans

and chimpanzees. For the phylogenetically informativeIt is well known (and is clearly stated in our article
[Watson et al. 1996]) that patterns in mismatch distribu- first hypervariable segment of the control region (HVSI),
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